statistics - How to generate observations from a linear model in R -
i have been trying verify ols estimators consistent under usual assumptions.
could please tell me how generate observations linear model afterwards can run regression on data , verify desirable properties of ols?
thank in advance,
not clear if want??
# sample data: x1 , x2 uncorrelated df <- data.frame(x1=sample(1:100,100),x2=sample(1:100,100)) # y = 1 +2.5*x1 - 3.2*x2 + n(0,5) df$y <- with(df,1 + 2.5*x1 -3.2*x2 + rnorm(100,0,5)) fit <- lm(y~x1+x2, data=df) summary(fit) #... # residuals: # min 1q median 3q max # -9.8951 -2.6056 -0.4384 3.6082 9.5044 # coefficients: # estimate std. error t value pr(>|t|) # (intercept) 1.954 1.263 1.548 0.125 # x1 2.516 0.016 157.257 <2e-16 *** # x2 -3.237 0.016 -202.306 <2e-16 *** # --- # signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # residual standard error: 4.611 on 97 degrees of freedom # multiple r-squared: 0.9986, adjusted r-squared: 0.9986 # f-statistic: 3.48e+04 on 2 , 97 df, p-value: < 2.2e-16
note se ~ 4.6 agrees "true" se = 5. note (intercept) estimated poorly because se(y|x) = 5.
par(mfrow=c(2,2)) plot(fit)
note q-q plot confirms normality.
Comments
Post a Comment