timedelta - How can I accurately display numpy.timedelta64? -


as following code makes apparent, representation of numpy.datetime64 falls victim overflow before objects fail work.

import numpy np import datetime def showmedifference( t1, t2 ):     dt      = t2-t1      dt64_ms = np.array( [ dt ], dtype = "timedelta64[ms]" )[0]     dt64_us = np.array( [ dt ], dtype = "timedelta64[us]" )[0]     dt64_ns = np.array( [ dt ], dtype = "timedelta64[ns]" )[0]     assert( dt64_ms / dt64_ns == 1.0 )     assert( dt64_us / dt64_ms == 1.0 )     assert( dt64_ms / dt64_us == 1.0 )     print str( dt64_ms )     print str( dt64_us )     print str( dt64_ns )   t1      = datetime.datetime( 2014, 4, 1, 12, 0, 0 ) t2      = datetime.datetime( 2014, 4, 1, 12, 0, 1 ) showmedifference( t1, t2 )  t1      = datetime.datetime( 2014, 4, 1, 12, 0, 0 ) t2      = datetime.datetime( 2014, 4, 1, 12, 1, 0 ) showmedifference( t1, t2 )  t1      = datetime.datetime( 2014, 4, 1, 12, 0, 0 ) t2      = datetime.datetime( 2014, 4, 1, 13, 0, 0 ) showmedifference( t1, t2 )  print "these " + np.__version__ 

1000 milliseconds 1000000 microseconds 1000000000 nanoseconds 60000 milliseconds 60000000 microseconds -129542144 nanoseconds 3600000 milliseconds -694967296 microseconds 817405952 nanoseconds these 1.7.1 

is bug in np.timedelta64? if so, idiom / workarounds have people used when working np.timedelta64?


Comments

Popular posts from this blog

How to access named pipes using JavaScript in Firefox add-on? -

multithreading - OPAL (Open Phone Abstraction Library) Transport not terminated when reattaching thread? -

node.js - req param returns an empty array -